• This site contains eBay affiliate links for which Sea-Doo Forum may be compensated.

Can these types of oil be mixed?

Status
Not open for further replies.

scrisp

Active Member
I have 3 quarts of Amsoil Interceptor oil, and just used a quart of Amsoil blue oil, I think's it's the HP stuff, but not synthetic.

I want to use the full synthetic in my 95 SPX, but is it okay to use it and can it be mixed with my existing quart or two of the blue oil?

I'm trying not to have to take the oil tank out and flush it all out, if I don't need to, just to use the Interceptor oil.
 
I'm no oil expert, but I do know that most TC-W3 oil is either blue or green, personally I wouldn't take the chance.

Lou
 
I actually talked to a tech at Amsoil a few years ago who told me that those oils are compatible (can be mixed). Yes, the Amsoil Blue oil is their Injector Oil, Amsoil Interceptor is goldish. I mistakenly purchased the Injector (blue) oil when I first started using Amsoil (their labeling is confusing). Because the Injector oil is NO ASH, your RAVES will need to be cleaned FREQUENTLY. I ran my oil low then just poured in the Interceptor. The Amsoil Interceptor is LOW ASH as is required. I would not use the remaining 2 quarts that you have though.
 
This article extract explains it in better detail. I was not saying it is ok to run the Injector oil, just that it does not seem necessary to remove the oil tank and flush it out as the 2 oils will not coagulate (based on what the Amsoil tech told me) Additives
If science could develop a base oil that would not thermally decompose (burn) until 1600 deg/f and not change in viscosity for –40 to 600 deg/f and not pollute the water or air, we would not need any additives in the base oil. Wouldn’t it be nice if all the oil collected in the expansion chamber body stayed in the same pristine state it went into the engine? We could simply recycle it. Well this isn’t going to happen in our lifetime (sorry, not even you younger guys will ever see this). Lubrication science is just not there yet. Additives are combined with the base oil to fix certain faults with the base oil or stretch the limits of the base oil in some cases. Additives are complex chemicals that account for most of the cost of a bottle of 2-stroke oil. Additives for 2-stroke oils fall into several general categories: Detergent/Dispersants, Antiwear agents, Biodegradability components, and antioxidants. Since the lubricating oil must burn as part of the combustion process in a 2-stroke engine, the residue resulting from this combustion process must be swept away after each firing stroke. If not, the residue (varnish, lacquer and other heavy hydrocarbon compounds) would build up and plug the exhaust port and stick the rings and power valve(s). Detergents/dispersants must be added to the oil to prevent this problem. The two types of detergents/dispersants most commonly used in 2-stoke oil formations are Ashless and Low Ash. Medium Ash and High Ash detergents are not used in 2-stoke oils. Ashless detergents are used in low temperature applications such as TCW3 oils where the ring land temperature is held below 300 deg/f. These detergents work well in engines where an excess of cooling capacity is available and power valves are not used. Ashless detergents are manufactured form organic nitrogen compounds (Hydrazine) instead of heavy metal compounds; therefore, they produce no ash as they are burned away. This is where the name “Ashless” comes from. Oils containing this type detergent have a characteristic Ammonia odor. Ashless detergents were used in the first generation of Bombardier XPS engine oil. The formulation was later changed to a low ash type detergent because of the higher temperatures generated by the 787 engines. Low Ash type detergent/dispersants are used in most API-TC, Jasco FC and ISO GC certified 2-stroke oils. These oils are designed for air-cooled high performance engines that operate under severe load/temperature conditions. Low Ash detergents can keep the deposits to a minimum at ring land temperatures as high as 400 deg/f. These detergents are manufactured from compounds of Calcium and Magnesium (heavy metals). After these compounds (Calcium Phenate or Magnesium Phenate) do their job, they burn away, forming a heavy metal salt (ash) that is swept away during the normal combustion process. Hence, this is where the name Ash-type detergent comes from. Ash type detergents depend on the higher combustion temperatures (787 and 951 engines) to keep the resulting ash swept out. Therefore, the use of these high performance oils in outboard or other mildly tuned 2-stroke engines is not recommended. Some manufacturers are using a combination of detergent types (Ashless and Low Ash) to provide a broader range of uses for their oil. It is important to note that oil designed to meet TCW3 specs. only (Ashless) will not protect an engine requiring API-TC (Low Ash) type oil. The converse is also true. Using a Low Ash oil in an engine designed for an Ashless type oil only could result in fouled plugs and gummy combustion chambers. When 2-stroke oil is kept in its temperature limits, it provides an adequate protective film between all moving parts. When that maximum temperature is exceeded, the oil film breaks down and usually seizure occurs unless another line of defense is added to the oil mixture. These are the Antiwear agents. These Zinc compounds (Zinc Dithiophoshate) flow in with the oil and are never used unless the base oil breaks down. If the base oil breaks down, they form a protective barrier between the moving parts (usually piston skirts and cylinder walls).
Since all 2-stroke engines partially burn and expel their lubricant in the exhaust, the resulting exhaust residue must be rendered harmless to the environment (air, water and land). All 2-stroke oil intended for marine use and many intended for land recreational use contain Biodegrading agents. These complex chemical compounds allow the microbes found in water and in the soil to consume the hazardous chemicals and oil from the exhaust as they fall in the water or on the ground. These Biodegrading agents do nothing for the performance of the oil (sometimes they even hinder it), but they help assure us that 2-stroke engines will be around for a while. As you can see, 2-stroke oils are a mixture of many different complex chemicals with base oil. Each specialty chemical has a job to do. Care must be taken to assure that these different chemicals detergents/dispersants, Antiwear agents, and Biodegrade agents) do not react or interfere with each other or otherwise impair the function of any other additive. Antioxidants are chemicals that reduce the chance of reaction between the various additives in the oil mixture. They effectively extend the ‘shelf life’ of 2-stroke oils.


What does ATP-TC and TCW3 mean?
Specifications for 2-stroke oils are developed from the design of the engine and its intended use (no surprise). Since this type engine has a wide variety of applications its no surprise that the specifications for the oils might vary also. For marine and PWC application there are 2 widely accepted standards for certifying 2-stroke engine oils. These are, by no means, not the only standards for 2-stroke engine oils. The European (ISO) and the Japanese (JASCO) standards have been developed, but these standards are not widely accepted in the country (yet). The standards most used in this country are the National Marine Manufacturers Association (NMMATCW3) standard and the American Petroleum Institute (API API-TC) standard. Both of these standards address the oil ability to prevent wear, keep the engine clean and biodegradability. Since these standards were written for different types of 2-stroke engines it stands to reason these standards would be different. Hence, the oils developed from these standards would also be different. The NMMA TCW3 standard was designed by the various manufacturers of outboard motors (Mercury, OMC, Yamaha etc.). These manufacturers so not utilize power valves, limit their max rpms to about 6800 and have excessive cooking capacity. They also must be able to operate at lower rpms for long periods of time without oil fouling the spark plugs. Although it’s true the performance of this type engine has increased in the last several years, the peak engine temperatures are still relatively low. The use of synthetic base oil in TCW# formulations has extended the useful range of these oils; their detergent system (Ashless) is designed for lower operating conditions. This is one of the reasons Bombardier specifically prohibits the use of these oils in their Rotax engines. The API API-TC standard was developed for Air-cooled, high rpm, high output 2-stroke engines operating under severe load conditions. Although this standard is no longer reviewed and updated since 1993 b the API, it still is in effect today. This standard most accurately addresses the condition Rotax and 2-stroke racing motorcycles and snowmobiles operate under. Almost all these oils are formulated with synthetic or synthetic blend base oils and all use a low ash type detergent. If you walk into a store that handles a variety of 2-stroke oils, it is relatively easy to find TCW3 certified oil. The manufacturer proudly displays that certification on each container. API-TC certified oils, on the other hand, are very difficult to find. There are two main reasons for this. First, many small API-TC oil manufacturers can’t or won’t spend the money (about $75,000) for the testing and certification process. Second, most engines requiring API-TC oils are for racing applications (Motocrossers and Crosscountry motorcycles) and don’t offer warranties with their engines anyway. The owner/operators of these machines know what oils work and don’t work. They do not need the API-TC certification on the bottle to help them decide what oil to use. There are many really good API-TC type oils on the market that have never been certified as such. Bombardier/Rotax is the only manufacturer that API-TC certified oils. The TCW3 market is about 10 times the size of the API-TC market. Outboard motor manufacturers require the use of TCW3 certified oils to maintain their warranty. With this great volume in oil sales at stake, it’s easy to see why TCW3 manufacturers can afford to certify their oils.

Rotax’s Position on What Oil to use

As we all know, Bombardier requires that an API-TC oil be used in their engines. Most other PWC manufacturers allow the use of TCW3 in their engines. So, what’s the difference? A PWC is a PWC, right? No, it’s not! Rotax marine engines evolved from their very successful snowmobile and motorcycle racing designs. These engines produce more power/cc than any other PWC manufacturer’s engine. Rotax designs these engines to work harder and run hotter than other brands. They simply need more protection than TCW3 oils can give. Those that use TCW3 oils are risking high temp. Seizure if the engine cooling system plugs or and internal fuel filter plugs (lean condition). These things may not happen very often, but when they do, it’s better to have a little extra protection that only a TI-TC oil can give.
 
Right. Nobody has ever proven to me that two mixed oils will or might coagulate, I've NEVER seen it happen so I'm a non-believer, LOL, that's the truth. I think it's a myth. I also don't know it can't happen ever, so I would avoid it, that's all.

Regardless, I wouldn't run a non ash in a seadoo motor because the ash is part of the lubricant package and it keeps the rings from sticking.
 
I also talked to an Amsoil rep at a local auto parts store near me a a couple yrs ago. He said the the HP and Interceptor can be mixed with no problem.

I would run it as low as you can first then refill with the proper oil.
 
The 95 SPX is a non-Rave motor, so I'm not worried about that. The blue oil is what has always been ran through it, but I had bought 3 quarts of Interceptor oil for my 96 XP motor that died. The SPX is getting low, and I just wanted to take the new oil out of the XP oil tank and use it in the SPX. Eventually, the SPX will be all over to the Interceptor oil, I just wasn't exactly sure if that was the correct oil for it and if they would coagulate if mixed.
 
Status
Not open for further replies.
Back
Top